THIN BONDED P.C.C. RESURFACING INTERIM REPORT NO. 1 BY WILLIAM H. TEMPLE PAVEMENT EVALUATION RESEARCH ENGINEER AND MASOOD RASOULIAN ENGINEER IN TRAINING Research Report No. 156 Research Project No. 80-3P(B) Conducted by LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT Research and Development Section In Cooperation with U. S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION "The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The Louisiana Department of Transportation and Development does not endorse products, equipment or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this report." June 1982 #### ABSTRACT After the successful experimentation in Iowa with thin-bonded concrete overlays as an alternative to bituminous overlay, the Louisiana DOTD decided to resurface a short section of US 61, north of Baton Rouge, using this technique during April 1981. The resurfacing consisted of 5.8-bag, limestone aggregate concrete mix with an average thickness of approximately 4 inches. The existing pavement, constructed in 1959, consisted of 9 inches of concrete over 6 inches of sand on a heavy clay embankment. The pavement was found to be structurally sound after 21 years of service; however, an improvement in ride quality was needed as the serviceability index had decreased to 2.3. The old pavement surface was cleaned with a device which blasted the surface with small steel shot instead of blasting sand. The steel shot were propelled by a centrifugal force and reclaimed using a vacuum arrangement which also collected the concrete dust. Less than 1/8 inch of the surface was actually removed during the cleaning operation. A water-cement grout was used as a bonding agent and was sprayed on immediately prior to overlay. The overlay increased the serviceability index of the pavement from 2.3 to 4.0 and increased the skid resistance from 36 to 64. Four months after construction, in August 1981, some disbonding was experienced on slabs adjacent to pressure relief joints which had closed more than anticipated. A high modulus epoxy-resin was used to rejoin the concrete resurfacing at these locations. Additionally, approximately 10 percent of the exterior slab corners appear to have experienced varying degrees of disbondment. After 11 months of service, the disbonded corners have not resulted in any slab cracking or other distress related problems. Recommendations are made relative to construction of future thinbonded pcc overlays. # TABLE OF CONTENTS | ABSTRACT | iii | |-------------------------|-----| | LIST OF FIGURES | vii | | LIST OF TABLES | ix | | METRIC CONVERSION CHART | хi | | INTRODUCTION | 1 | | PURPOSE | 2 | | METHODOLOGY | 3 | | DISCUSSION OF RESULTS | 16 | | CONCLUSIONS | 24 | | RECOMMENDATIONS | 25 | | BIBLIOGRAPHY | 27 | | APPENDIX | 29 | | Contract Specifications | 31 | | Concrete Strength Tests | 39 | # LIST OF FIGURES | Fi | gure | No. | |----|------|-----| | | | | | 1 | Longitudinal Cracks Over Dowel Bars | 6 | |---|---|------------| | 2 | Concrete Removed Prior to Patching | 6 | | 3 | Relief Joint Closure with Time | 9 | | 4 | Slab Movement Due to Stress Relief | 9 | | 5 | Slab Cleaner Using Steel Shot | 1 | | 6 | Cleaned Concrete Surface | 1 | | 7 | Bond Measuring Device | L 5 | | 8 | Reflection Cracking in Asphalt Overlay (6 months) | L 7 | | 9 | Deflection Test Data | 22 | # LIST OF TABLES | Table No. | | Page No. | |-----------|--|----------| | 1 | Coarse Aggregate Gradation, Concrete Paving Mix Design | | | 2 | Bond Shear Strength | . 19 | | 3 | Compressive Strength, Flexural Strength (Field Molded Specimens) | | | 4 | Field Tests on Plastic Concrete | • 40 | | 5 | Freeze-Thaw Durability, Abrasion, Absorption Tests | . 40 | | 6 | Compressive Strength At 28 Days for Contract Acceptance | . 41 | # METRIC CONVERSION FACTORS* | To Convert from | <u>To</u> | Multiply by | | | |--|--|--|--|--| | | Length | | | | | foot
inch
yard
mile (statute) | <pre>meter (m) millimeter (mm) meter (m) kilometer (km)</pre> | 0.3048
25.4
0.9144
1.609 | | | | | Area | | | | | square foot
square inch
square yard | square meter (m ²) square centimeter (cm ²) square meter (m ²) | 0.0929
6.451
0.8361 | | | | | Volume (Capacity) | | | | | <pre>cubic foot gallon (U.S. liquid)** gallon (Can. liquid)** ounce (U.S. liquid)</pre> | cubic meter (m³) cubic meter (m³) cubic meter (m³) cubic centimeter (cm³) | 0.02832
0.003785
0.004546
29.57 | | | | | Mass | | | | | <pre>ounce-mass (avdp) pound-mass (avdp) ton (metric) ton (short, 2000 lbm)</pre> | gram (g)
kilogram (kg)
kilogram (kg)
kilogram (kg) | 28.35
0.4536
1000
907.2 | | | | Mass per Volume | | | | | | <pre>pound-mass/cubic foot pound-mass/cubic yard pound-mass/gallon (U.S.)** pound-mass/gallon (Can.)**</pre> | kilogram/cubic meter (kg/m³)
kilogram/cubic meter (kg/m³)
kilogram/cubic meter (kg/m³)
kilogram/cubic meter (kg/m³) | 16.02
0.5933
119.8
99.78 | | | | <u>Temperature</u> | | | | | | deg Celsius (C)
deg Fahrenheit (F)
deg Fahrenheit (F) | kelvin (K)
kelvin (K)
deg Celsius (C) | t _k =(t _c +273.15)
t _k =(t _F +459.67)/1.8
t _c =(t _F -32)/1.8 | | | ^{*}The reference source for information on SI units and more exact conversion factors is "Metric Practice Guide" ASTM E 380. ^{**}One U.S. gallon equals 0.8327 Canadian gallon. #### INTRODUCTION With the near completion of the nation's interstate highway systems, emphasis is shifting from construction to restoration, rehabilitation, and resurfacing of our existing highway network. The restoration process of pcc roads and streets has traditionally been accomplished using bituminous materials for resurfacing. Recently, however, petroleum related paving materials are becoming scarce and, therefore, more expensive. The slip-form paver along with surface cleaning technology has permitted thin-bonded concrete resurfacing to become a viable alternate for concrete pavement rehabilitation. After the success with thin bonded pcc resurfacing by the state of Iowa, the Louisiana DOTD decided to resurface approximately one mile of US 61, north of Baton Rouge, using this technique on an experimental basis. #### PURPOSE The purpose of this research study is to evaluate the constructibility of a thin-bonded pcc resurfacing, and to determine its performance relative to heavy traffic loads and Louisiana environmental conditions. #### METHODOLOGY # Project Information The pcc project selected for resurfacing was a 2-lane section of US 61, north of Baton Rouge, which was to be overlaid upon construction of two new north-bound lanes. The pavement, constructed in 1959, consisted of 9 inches of concrete over 6 inches of sand on a heavy clay embankment. Transverse contraction joint spacing was 20 feet with steel dowel bars spaced on 12-inch centers as the load transfer devices. Prior to resurfacing, the concrete pavement had carried approximately 120 percent of its design traffic load (3 X 10⁶ 18-kip axles). Truck traffic on this segment on US 61 is reflective of heavy industrial loads in a variety of categories including chemical, steel, and concrete haul as well as logging and agricultural commodity haul. The 1981 ADT was 7800 with 15 percent trucks. A manual classification count was used to compute an ADL of 750 equivalent axle loads. Overall, the project was in good condition although the ride was rough, P.S.I. = 2.3. Embankment settlement and erosion of the sand subbase had caused vertical displacement of some of the slabs although the extent of transverse joint faulting was very minor. The primary cause of slab cracking was dowel bar misalignment; however, this condition caused only minor pavement damage. A deflection evaluation using the Dynaflect device confirmed that the concrete pavement was structurally sound after 21 years of service. ## Resurfacing Thickness Design One important consideration in designing a bonded concrete overlay is that the existing concrete pavement must contain slabs which are structurally sound. Broken and shattered concrete must be removed prior to resurfacing. Where D-cracking has undermined the strength of a concrete surface, removal of one-half inch or more of concrete may be required throughout the project by rotomilling, grinding, etc. Concrete pavements in Louisiana do not experience D-cracking because of our extremely hard chert aggregate and mild winters. An indication of the resurfacing thickness required to prevent fatigue cracking may be derived by subtracting the number of inches of existing sound concrete from the design slab thickness provided by a pavement design guide. For the current overlay project, the Louisiana-AASHTO rigid pavement design guide indicated a required slab thickness of 11 inches on a 20-year design of 8 X 10⁶ 18-kip axles. After patching and repair the 9-inch existing pavement would require at least a 2-inch resurfacing. A decision was made to require a 3-inch minimum resurfacing thickness to insure constructibility and because of the absence of a stabilized base course between the pavement and the heavy clay subgrade. # Traffic Control A
positive concrete barrier was employed on each end of the resurfacing project beginning near the median crossover lanes and extending approximately 300 feet. Breakaway plastic barrels were used to separate traffic for the remainder of the project. The plastic barrels proved to be an effective barrier during the two-month lane closure with traffic flowing smoothly and no accidents reported. The success of the plastic barrels was attributed to their high visibility in both day-time and night-time driving conditions and to the breakaway feature when struck by a passing vehicle. # SEQUENCE OF CONSTRUCTION ## Pavement Drainage A longitudinal shoulder drainage system was added prior to the pcc resurfacing. The system consisted of an excavated trench, a perforated 4-inch diameter slotted under-drain pipe, plastic filter cloth, and pea-gravel backfill with a pcc cap at the surface. Laterals were constructed to facilitate the drainage. ## Pavement Cracking and Repair The existing 20-year-old pavement required only a small amount of repair prior to resurfacing. The estimated quantity for repair was 10 square yards for the 0.8-mile, two-lane section. The predominant cause of broken concrete was dowel bar misalignment. In most instances the concrete, usually fractured from the dowel bars up through the surface, had not become loose under traffic loads. Minor longitudinal cracks extending from the transverse contraction joints and located over dowel bars, may be observed in Figure 1, page 6. This type of cracking is usually found in older pcc pavements in Louisiana which do not contain stabilized base courses, and are usually located in the outside wheel path of the truck lanes. On the US 61 project few of these cracks spanned the 20-foot panels, with a typical crack length being approximately three feet. In most instances the cracks were still very tight with no evidence of faulting; therefore, repair was not considered necessary. All areas requiring repair were patched with portland cement concrete prior to the surface cleaning operations. Concrete removal as a result of dowel bar misalignment is depicted in Figure 2. It should be noted that in the special provisions for the pcc resurfacing there is an item for only partial depth pavement patching. This is because a full depth patching item was already included in the specifications for the H.M.A.C. resurfacing project of which the pcc resurfacing comprises 0.8 miles. In several areas the two 12-foot lanes were separated by a one-half-inch to one-inch longitudinal joint for approximately three to four panels (60 to 80 feet). Pavement repair operations in one of these areas indicated that the lane tie bars had been omitted during construction in these areas. At another location the inside lane was one inch lower than the outside lane. FIGURE 1 Longitudinal Cracks Over Dowel Bars (No patching required) FIGURE 2 Concrete Removed Prior to Patching Deflection testing indicated that in these areas the concrete slabs were well supported by the sand subbase, therefore no corrective actions were taken prior to resurfacing. ## Stress Relief Joints Three stress relief joints were constructed using two full-depth saw cuts, four inches apart with a 1/8-inch saw blade. One joint was located on each end of the test project and one in the center, for a spacing of approximately 2000 feet between joints. The relief joints were included in the test section to relieve slab stresses and to provide isolation from the rest of the project where transverse contraction joints were not to be cleaned. Another purpose was to determine their constructibility and compatibility with the resurfacing process. One day after sawing, the relief joints had closed approximately one inch. Figure 3, page 9 depicts the joint closure with time. Twelve slabs on each side of the relief joints experienced movement toward the four-inch joints. Each relief joint provided immediate stress relief for approximately 500 feet of pavement. The relief joints were sealed with a styrofoam type insert upon sawing. #### Transverse Contraction Joints The transverse contraction joint widths ranged from 0.5 to 0.75 inches. The asphalt joint filler which had been used to fill the joints was no longer an effective seal, and most of the joints were impacted with sand and gravel. The joints were cleaned by making several passes with an abrasive 3/8-inch saw blade. After sawing, a stiff rotary wire brush was used to further clean the faces of the joint. Compressed air was applied to complete the cleaning operation. Water blast equipment was not considered necessary, although it was mentioned in the project specifications in the Appendix, page 31. Compression seals were installed in the joints as a temporary measure to prevent the metal shot from the surface cleaning device from clogging the joints. A cotton backup rope was first tried but the rope was destroyed by the surface cleaner. After the surface cleaning was completed, the compression seals were removed and replaced with the cotton rope. The location of each end of the transverse joints was marked in the asphalt shoulder with a nail and bottle cap. Later after the pcc resurfacing was in place, a chalk line was stretched between the nails to mark the position of the joints for sawing. After cutting the three relief joints, the twelve contraction joints on each side of the relief joints which were displaced had to be remarked for sawing. Figure 4 page 9 depicts the slab movement attributable to stress relief. # Surface Preparation Throughout the history of bonded concrete overlays, both for bridge deck repair and for roadway resurfacing, the need for a thoroughly cleaned concrete surface has been emphasized. Motor oil dripping from passing vehicles, asphalt concrete, and surface dirt tend to prevent the concrete resurfacing from bonding unless the contaminants are completely removed. Some of the techniques which have been employed to clean concrete prior to resurfacing include waterblasting, sandblasting, scarification by milling, grinding, and washing with detergent or acid solutions. The predominant concrete aggregate used in Louisiana is too hard to allow economical scarification by milling. The contractor for this resurfacing elected, instead, to clean the pcc surface by blasting with steel shot. The surface cleaner depicted in Figure 5, page 11, FIGURE 3 Relief Joint Closure with Time utilizes centrifugal force to propel the steel shot, with a vacuum arrangement used to catch and bag the concrete dust. Since cleaning was the prime objective in the surface preparation, only approximately 1/8-inch of the pcc surface was removed in each 8-foot wide pass of the cleaner. The newly cleaned surface is depicted in Figure 6, page 11. The quality of cleaning was excellent except in areas where asphalt concrete had been smeared on the pcc surface. These locations were primarily along the pavement edge adjacent to the shoulder, and along transverse joints which had been previously filled with an asphalt based compound. A portable grinder was used to remove the asphalt concrete prior to resurfacing. ## Paving Operations The cleaned pcc surface was blasted with compressed air immediately prior to application of the bonding agent—a water/cement grout. The grout was delivered in agitor trucks and sprayed on the dry surface immediately prior to paving. The water/cement ratio of the mixture was approximately 0.62, or 7 gallons of water per bag of cement. The stiff slurry was agitated at all times during use, but it was required that application take place within 90 minutes of mixing. Care was exercised in not allowing the grout to be sprayed too far in advance of the paver. During delays in the resurfacing operation, wet burlap was used to cover grout which had already been applied. The burlap prevented the grout from completely hardening, primarily because of the moderate ambient temperature (approx. $75^{\circ}F$) at the time of paving (April 1st - 5th). It is probable, however, that paving delays of 20-30 minutes in hotter weather would have resulted in hardening of the grout, requiring removal or possibly preventing adequate bond where the grout was partially hardened. The concrete resurfacing was placed and finished with a slip-form paver with grade wire control to a minimum thickness of 3 inches. FIGURE 5 Slab Cleaner FIGURE 6 Cleaned Concrete Surface The concrete was delivered in ready mix trucks but could not be side dumped because of clearance problems created by the 5-foot offset of the erected grade line. A load of concrete sand was dumped in the area where the concrete trucks turned in and began backing up to the paver to protect the cleaned surface. When the trucks reached the slip-form paver a polyethylene sheet was placed under the vehicles to catch any motor oil or other substances which might contaminate the cleaned surface. After the surface finishing operations, the pcc resurfacing was textured transversly with metal times. The white pigmented curing compound was then applied at one and a half times the normal rate to enhance curing within the thin overlay. The resurfacing was placed over the transverse contraction joints and the pressure relief joints without using an insert to form the joints. The contraction joints and pressure relief joints were sawed within 24 hours of paving using the nail and bottle cap markers placed in the asphalt shoulders as a reference. The transverse joints were sawed to a 1/2-inch width for the full depth of the resurfacing and sealed with a pourable sealant. The relief joints were created in the overlay by using two parallel saw cuts approximately 2 inches apart (4-inch relief joints had closed approximately 2 inches). The joints were than sealed with neoprene compression seals. The centerline longitudinal joint was sawed to a depth of 1 inch within 24 hours of paving on half of the test project. For the other half of the project, a crack
was allowed to form in the overlay from the longitudinal joint in the 9-inch slab. The sawing method proved to create a better looking joint. The actual pavement section was 1-1/2 inches thicker at the outside edge of the passing lane as a result of a decision to increase the cross slope from 1.5 percent to 2.0 percent. The concrete paving mix was Louisiana's standard slip-form mix with the exception of aggregate type and gradation. Crushed limestone was selected as a substitute aggregate to allow sawing of joints through the overlay. The coarse aggregate gradation and paving mix design were as indicated in Table 1. TABLE 1 COARSE AGGREGATE GRADATION | U.S. Sieve | <pre>% Passing (By Weight)</pre> | |------------|----------------------------------| | 1" | 100 | | 3/4" | 90-100 | | 3/8" | 20-55 | | No. 4 | 0-10 | ## CONCRETE PAVING MIX DESIGN | SAND | 1192 pounds | |--------------|----------------| | LIMESTONE | 1920 pounds | | CEMENT | 545.2 pounds | | WATER | 31.3 gallons | | AIR AGENT | 3.0 ounces | | AIR CONTENT | 5% <u>+</u> 2% | | SET RETARDER | 2.9 ounces | | SLUMP | 1.0 - 2.5 | # Concrete Consistency A concrete batch plant was assembled 4 miles south of the project and the concrete was delivered in ready mix trucks. The slump and the air content of the concrete batches were not consistent; however, this did not have any adverse effect on the strength and durability of concrete as indicated by lab tests. On one occasion, the concrete mixing was not performed carefully and approximately 200 linear feet of the resurfacing had to be removed and replaced because an excessive amount of air-entraining agent was introduced into the mix. The quantity of the air-agent introduced was not determined; however, it was sufficient to prevent the resurfacing from bonding to the old pavement. Fourteen-day compressive strength tests indicated low strength in the contaminated section (2000 psi) as compared to the adjacent concrete slabs which showed strength of 4000 psi. Additionally, the unit weight measurements of the cores were reduced by 12 lbs/ft³ from the average of the 142 lbs/ft³. # Concrete Testing The slump, air content and the unit weight measurements of the plastic concrete were taken at several stations throughout the project. In addition to the fresh concrete tests, cylinders and beams, representing each day's pour, were made for strength determination. Specimens were also made for determining the freeze-thaw durability, abrasion resistance and absorption rate of the concrete used for this project. These specimens were initially air cured at the site for 24 hours and later transferred to the laboratory for further curing in the moisture room. Cores of the pavements were also taken according to the La. DOTD regular acceptance schedule for compressive and bond strength determination. # Bond Strength Determination The equipment and techniques used for the determination of bond strength were developed by the Iowa Department of Transportation as a result of their experimentation and experience in bonded concrete overlays (1). The equipment consists of a two-part sliding collar which fits over a four-inch diameter core of the resurfaced pavement as shown in Figure 7. The interface plane between the underlying pavement and the resurfacing layer is lined up with the junction of the two sliding parts. The collar is then placed into a concrete testing machine, put in tension and the load required to shear off the resurfacing is measured. By dividing the cross-sectional area of the core into the required force, the bond strength in lbf/in is determined. FIGURE 7 Bond Measuring Device #### DISCUSSION OF RESULTS # Overlay Crack Reflection After 11 months of service no reflective cracking has resulted from cracks in the original slab or from areas which were patched prior to resurfacing. Deformed steel tie-bars which were placed in the resurfacing over selected slab cracks and were omitted from others, have provided no difference in performance to date. The fact that no cracks have reflected through the thin resurfacing may be in part due to the fact that slabs were well seated and uniformly supported, as indicated by surface deflection tests. # Transverse and Longitudinal Joints The process of cleaning and subsequent resealing of transverse contraction joints during the pcc overlay process provides a potential performance advantage over bituminous overlays of pcc pavements with contaminated joints. Pcc slabs continue to shift and displace as a result of pressure from locked joints even after an asphalt overlay has been placed. Also, potential for joint/crack reflection is eliminated in the pcc resurfacing. Transverse joints reflected through the adjacent 6-inch bituminous overlay within six months following the overlay, as depicted in Figure 8, page 17. Surface water collecting in this type of crack has been observed to cause stripping of the asphalt in the joint areas leading to fatigue of the overlay. The longitudinal centerline joints reflected through the resurfacing in areas where it was intentionally not sawed. This produced a crack which was wavey and which typically deviated from a straight line by 2 to 4 inches. # Stress Relief Joints Although there were few signs of pavement pressure due to joint contamination, it was decided that several pressure relief joints would be constructed to determine the constructibility and compatibility with resurfacing. All three of the four-inch pressure relief joints experienced approximately two inches of closure during the several days between sawing and resurfacing. The three joints are now approximately 1-1/2 inches wide after a year of stress relief. FIGURE 8 Reflection Cracking in Asphalt Overlay # Water/Cement Grout The water/cement grout was quickly absorbed into the dry, cleaned pcc surface once it was applied. In this sense it was protective of the moisture in the plastic concrete which is necessary for adequate hydration. However, because of delays in paving operations it would probably be unadvisable to apply the grout during the summer months in Louisiana when temperatures are at their maximum. If the grout dries prior to application of the resurfacing, the bond strength may be greatly reduced. This is especially critical at the exterior slab corners where slab temperature differentials cause an upward curling effect which can fail the grout in tension. Additionally, there is a tendency to apply grout less heavily along the outer edges of the pavement when the slurry is applied by one man using a sweeping pattern directed from the center of the roadway. paving delays, areas with the thinnest applications of grout will tend to dry more quickly resulting in a weaker bond at the outer edges and corners. #### Concrete Tests The unit weight, air content, and the slump of the concrete were checked several times during each day of construction. Concrete specimens were also made for strength and durability determination. The strength of concrete was tested at 7, 28, and 90 days. Abrasion and absorption rates of the concrete were also determined. Tables 3 and 4 in the Appendix, pages 39 and 40, list the results of the strength tests and the fresh concrete test data. The durability and abrasion results are indicated in Table 5 of the Appendix, page 40. As indicated in these tables, the concrete was satisfactory in both strength and durability. The core strengths measured for contract acceptance are listed in Table 6, Appendix, page 41. ## Bond Strength Initial bond strength tests were run when the first day's paving had aged seven days. The strength values measured were 534, 321, and 461 psi for an average strength of 439 psi. Research experiments in Iowa have indicated that 200 psi is an adequate bond strength and that where such a bond has been obtained it has endured. The second set of bond strength tests were performed after the resurfacing had aged 28 days. Four-inch diameter cores were taken every 300 feet to represent the 0.8-mile test section. All the cores taken and tested in shear showed bond strengths higher than 200 psi with the exception of one core which had a bond strength of 92 psi. However, another core taken one foot from the low bond strength sample had a strength in excess of 700 psi; therefore, it is possible that the first test was invalid. As indicated in Table 2, the average shear strength was 756 psi at 28 days. TABLE 2 BOND SHEAR STRENGTHS (28 DAYS) | Sample No. | Station | Bond Strength (lbf/in ²) | |---|---|---| | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 94+00
97+00
100+00
103+00
106+00
109+00
112+00
115+00
121+00
124+00
126+00
128+00
130+00
Mean Strength | 1013
975
989
1035
645
707
866
203
945
231
936
541
904
593
756 | Approximately six months after the road was opened to traffic several cracks appeared in the resurfacing adjacent to one of the pressure relief joints. The cracks were closely spaced diagonal cracks near an exterior slab corner in the outside lane. The impact sounding of a three-pound hammer in conjunction with a coring operation indicated that a large portion of two 10-by-12-foot slabs on one side of the relief joint had disbonded. The neoprene compression seal which was used to seal the relief joints had been extremely compressed by this time, as the joint now measured 1 1/4 inches. Upon removal of the neoprene seals, it was concluded that placement of the seal only at the upper portion of the relief joint created excessive stresses in the overlay as the joint continued to close. The relief joint in the
original 9-inch slab was observed to have closed to within 1/2-inch of complete closure. The 10-by-24-foot panel on the other side of this relief joint was bonded for approximately one half of its surface area. The other two relief joints also experienced some exterior corner disbonding. The neoprene seals were removed from all three relief joints and were replaced with a hotpoured sealant. The two slabs with the major disbondment were rejoined to the nine-inch slab using a high-modulus epoxy-resin. Four-inch-diameter cores were cut in the corners and center of the slabs through the resurfacing and for four inches into the old pavement. The epoxy-resin was used to fill the core holes thereby "pinning" the resurfacing back to the original pavement. Additionally, approximately 10 percent of the exterior slab corners throughout the project have also disbonded. The extent of the separation is typically one to two feet on each side of the corner. The cause of the problem at these slab corners is thought to be attributable to slab curling which places the water/cement grout in tension. The fact that no interior slab corners have disbonded also implies that curling is probably a major factor as the exterior corners have a greater freedom to curl. All areas which have disbonded have been marked for future evaluation to see whether the overlay is continuing to separate or whether the condition has stabilized. Another possible contributor to the corner disbonding is the construction process itself, wherein grout may become too dry during delays in construction. Corner disbonding has been experienced on other thin-bonded pcc overlays such as the Selfridge Air National Guard Base airfield, Ref. 4. This three-inch resurfacing near Mt. Clemens, Michigan experienced disbonding on approximately 10% of the slab corners on the north runway end, but experienced no bond problems on the south runway end. The pavement is reported to be in very good condition after 20 years of active service. # Ride, Skid Resistance, Deflection Evaluation The skid number obtained after resurfacing showed a considerable improvement. The skid number of the original pavement was 36, which is typical for a 20-year-old concrete surface that has had no surface texture added by tining or grooving. The skid resistance was increased to 64 by adding the textured concrete surface. The pcc resurfacing also improved the ride of the pavement which had become rough as the concrete slabs resting on a sand subbase shifted from their original positions. The Serviceability Index increased from 2.3 to 4.0 as measured with the Mays Ride Meter. Surface deflections were measured before and after resurfacing with the Dynaflect device. The deflection values have been converted to a strength index (ability to carry load) and to the Surface Curvature Index (S.C.I.) which is an indicator of stiffness or load transfer capability. As indicated in Figure 9, both the thin pcc resurfacing and the 6-inch asphalt resurfacing have increased the structural capacity of the pcc slabs. These parameters will continue to be monitored to document any seasonal or long-term deflection trends. FIGURE 9 Deflection Test Data # Cost of Resurfacing Computed costs for the pcc resurfacing are based on the experimental 0.8-mile test section and, therefore, may be greater than would be encountered on a large scale resurfacing project. The actual costs and quantities for the resurfacing are as follows: | Item | Description | Quantity | Cost | |------------|-----------------------------------|--------------------------|--------------| | 724 (1)A | Full Depth Patching | 0.41 yd^2 | \$ 16.4 | | Sl | 3-inch min. Concrete Overlay | 1,341.23 yd ³ | 154,241.4 | | S2 | Surface Preparation (cleaning) | $10,984.29 \text{ yd}^2$ | 24,714.6 | | S 6 | Stress Relief Joints | 3 | 5,025.00 | | S7 | Pavement Patching (Partial depth) | 2.33 yd^2 | 233.00 | | | | Total | \$184,230.50 | ## Cost per square yard = \$16.77 The cost of adding 10-foot and 4-foot asphaltic concrete shoulders to the overlay increases the total cost per square yard by \$7, for a total of approximately $$24/yd^2$. A comparable 6-inch asphalt overlay would cost approximately $$12/yd^2$ for the overlay and $$9/yd^2$ for the shoulders for a total of $$21/yd^2$. ## CONCLUSIONS The thin-bonded pcc resurfacing appears to be a viable alternative to bituminous overlays in terms of improved ride, skid resistance, added structural capacity, and initial cost. Joint damage due to blowups and crushed joint faces is one of the most damaging distress conditions found on Louisiana's pcc pavements, primarily occurring on pavements with the longer (58.5-foot) joint spacings. Cleaning and resealing of joints in the resurfacing proccess, emphasis on patching and repair, and an increase in pcc slab thickness of approximately 40 percent all suggest a potential longterm performance advantage for this process over bituminous overlay where joints are not cleaned and where reflection cracks quickly develop over transverse joints. Excluding the bond problem adjacent to the closed pressure relief joints, an estimated 99.7 percent of the surface area is bonded and is performing satisfactorily after one year of service. #### RECOMMENDATIONS - 1) The action of slab curling places the bonding grout in tension, primarily at the exterior slab corners. Extra care must be taken (a) to assure adequate grout coverage at these corners (approx. 1/4 inch),(b) to prevent the drying of the grout prior to resurfacing and (c) to provide a grout which is of a creamy consistency. - 2) The technique used for surface preparation appears to be adequate; however, the asphalt stains which were concentrated along the pavement edges were difficult to completely remove. Since a completely cleaned surface is necessary for bond, all the asphalt stains must be thoroughly removed. - 3) Pressure relief joints are recommended for pavements with a history of blowups; however, care must be taken not to construct or seal the joints in a manner which will transmit the stress to the resurfacing bond. One solution would be to cut the relief joints far enough in advance of the resurfacing operations to allow most of the stresses to dissipate, resaw the joints if neccessary, and then resurface the pavement. - 4) Thin-bonded pcc resurfacing operations should not be scheduled during the hottest months of the year in Louisiana (i.e. June, July, August). The premature drying of bonding grout will be accelerated when the cleaned pcc surface is extremely hot (95°F). - 5) The longitudinal joint between lanes should be saw cut or induced by using an insert to prevent an irregular reflection crack from forming. - 6) Additional research in this area should include thinner resurfacing thickness as well as inclusion of a light water spray applied to the cleaned surface prior to grout application. A moist surface should help prevent the drying of grout when paving delays occur during hot weather. Application of light water spray without the use of bonding grout is another consideration for future research which might also produce an acceptable bond. #### SELECTED BIBLIOGRAPHY - 1. Bergren V. Jerry, "Bonded Portland Cement Concrete Resurfacing," Division of Highways, Iowa Department of Transportation. - 2. Knutson M. J., "Introduction to Concrete Overlays," 15th Annual ICPA Workshop Des Moines, Iowa, Feb. 15, 1979. - 3. Thin Bonded P.C. Overlay Report, Iowa DOT Project, Open House, September 1979. - 4. Bayer R.E., Foxworthy P.T. US Air Force Engineering and Services Center, Tyndall Airforce Base Florida, "Performance of Thin Bonded Portland Cement Overlay, on Military Airfields." Second International Conference on Concrete Pavement Design, Purdue University, April, 1981. - 5. Halm H. J., "Bonded Concrete Resurfacing," Executive Director, American Concrete Pavement Association, Second International Conference on Concrete Pavement Design, Purdue University, West Lafayette Indiana. # SPECIAL PROVISIONS (State Project No. 19-02-38) ITEMS S-1, S-2, S-6 AND S-7 PORTLAND CEMENT CONCRETE RESURFACING: These items consist of furnishing and constructing a thin (3" minimum thickness) portland cement concrete overlay on existing portland cement concrete pavement, including partial depth pavement patching, preparation of the existing surface and construction of stress relief joints, all in accordance with plan details, Section 601 of the Standard Specifications as amended elsewhere in the project specifications, and the following requirements. Partial Depth Pavement Patching: The contractor shall remove all unsound concrete by approved methods, and all damaged joint materials shall be removed and replaced with new materials. Prior to placing patching material, all surfaces within the patching area shall be thinly coated with grout. The area shall then be patched with portland cement concrete in accordance with Section 724 of the Standard Specifications. Surface Preparation: Prior to placing the concrete overlay, all pavement patching shall be completed, and all transverse joints shall be cleaned of all incompressible materials by use of a joint router and water-blast equipment and the joint resealed with backing material as shown on the plans. After completion of patching and joint resealing operations, the contractor shall remove all painted markings, raised pavement markers, loose concrete, dirt, oil, grease and other foreign material from the pavement surface by means of sandblasting, abrading, grinding and/or other approved methods. Grout Application: Just prior to placement of the concrete overlay, the contractor shall clean the pavement surface to be overlaid by use of air-blast equipment and shall place a bonding grout of portland cement mixed with sufficient water to form a stiff slurry that can be applied to the pavement surface by pressure spray, providing a thin, even coating that does not run or
puddle. The water/cement ratio of the grout shall be approximately 0.62, which is 7 gallons of water per bag of cement. The grout shall be agitated at all times during its use, and the cement-towater contact time of the grout shall not exceed 90 minutes before placement. The pavement surface shall be dry at the time of grout application to allow absorption of the grout. The rate of progress in applying grout shall be limited so that the grout does not become dry before it is covered with new concrete. During delays in the surfacing operations, should the surface of the grout become dry, additional grout shall be sprayed on the area as directed by the engineer. In areas where the grout becomes thoroughly dried, the grout shall be removed by sandblasting or other approved methods. Concrete Overlay: If overlay operations are discontinued for any reason, the contractor shall remove all new concrete back to the last transverse joint completed. In no case shall the overlay operation stop between transverse joints. (a) Coarse Aggregate: Coarse aggregate for the concrete overlay shall be an approved crushed stone conforming to Subsection 1003.03 having the following gradation. | U.S. Sieve | % Passing (By Wt.) | | |------------|--------------------|--| | 111 | 100 | | | 3/4" | 90-100 | | | 3/8" | 20-55 | | | No. 4 | 0-10 | | (b) Paving Equipment: The concrete overlay shall be placed and finished with an approved slip-form paver in accordance with Subsection 601.18. The contractor shall maintain a uniform rate of concrete placement with a minimum amount of stopping and starting. - (c) Curing: The concrete overlay shall be cured in accordance with Subsection 601.12, except that curing compound shall be applied at $1\ 1/2$ times the specified rate. - (d) Transverse Joints: Transverse joints shall be constructed at existing transverse joint locations in accordance with plan details and Subsection 601.10(c). Joint sawing operations shall be completed within 24 hours after concrete placement and sealed in accordance with Subsection 601.15. Load transfer devices will not be required. - (e) Stress-Relief Joints: Transverse stress relief joints shall be constructed full depth through the concrete overlay and underlying pavement in accordance with plan details. A preformed joint filler conforming to Subsection 601.10(b) shall be placed in the joint, extending from the bottom of the joint to the top of the concrete overlay. The method of construction of the stress-relief joints shall be at the contractor's option, subject to approval of the engineer. Limitation of Operations: No traffic, including construction vehicles, shall be permitted on the concrete overlay for at least 7 days after placement. At temperatures below 55° F, the engineer may require a longer waiting time. No concrete overlay shall be placed when the air temperature in the shade and away from artificial heat is below 40° F. All transverse joints, including stress relief joints, shall be sawed and sealed prior to beginning asphaltic concrete overlay operations on adjacent shoulders. Measurement and Payment: The method of measurement for surface preparation and partial depth pavement patching will be per square yard. Concrete resurfacing will be measured by the cubic yard, based on the theoretical batch at the plant. Stress-relief joints will be measured per each. Payment will be made at the contract unit prices, which includes furnishing all required materials and performing all operations necessary to complete the portland cement concrete resurfacing. Payment will be made under. - Item S-1, Portlant Cement Concrete Resurfacing (3" Minimum Thickness), per cubic vard. - Minimum Thickness), per cubic yard. Item S-2, Surface Preparation for Portland Cement Concrete Resurfacing, per squard yard. - Item S-6, Stress-Relief Joint for Portland Cement Concrete Resurfacing, per each. - Item S-7, Partial Depth Pavement Patching, per square yard. Item S-3, SHOULDER DRAINAGE SYSTEM: This item consists of furnishing and constructing plastic pipe underdrains in accordance with plan details and the Standard Specifications as amended by project specifications and the following. The following work shall be performed under this item: - 1. Excavation of shoulder underdrain trench. - 2. Disposal of all excavated materials. - 3. Furnishing and installing plastic filter cloth. - 4. Furnishing and installing the perforated underdrain pipe. - 5. Furnishing and installing the pea gravel backfill. - 6. Furnishing and placing polyethylene film over the back-filled trench (if portland cement concrete is used for base course). - 7. Furnishing and constructing shoulder base course and surfacing of either asphaltic concrete or portland cement concrete to replace the removed base course and surfacing during trenching. #### Materials: (a) Perforated Pipe: Pipe shall be either corrugated or non-corrugated; shall be either plastic pipe or plastic tubing; shall conform to AASHTO Designation: M 252 (polyethylene), or ASTM Designation: D 2729 or D 3034 (polyvinyl chloride), or ASTM Designation: D 2751 (acrylonitrile butadiene styrene); and shall have either slot perforations or circular perforations conforming to AASHTO Designation: M 252. Maximum slot perforation length shall be 1 1/4". The stiffness for PVC pipe shall conform to ASTM Designation: D 3034. - (b) Plastic Filter Cloth: Plastic filter cloth shall confrom to Subsection 1017.15 of the Supplemental Specifications elsewhere herein. - (c) Backfill: Pea gravel backfill materials shall be reasonably free of sticks and other foreign matter and shall be graded as indicated on the plans. - (d) Polyethylene Film: Plastic sheeting used to cover the top of the backfilled trench prior to placement of portland cement concrete shall be an approved 6-mil thick polyethylene film. - (e) Asphaltic Concrete: Asphaltic concrete for replacement of removed shoulder base course and surfacing shall conform to Section 501. - (f) Portland Cement Concrete: Portland cement concrete for replacement of removed shoulder base course and surfacing shall be Class A conforming to Section 902 and having a minimum of 7 sacks of cement (94 pounds each) per cubic yard. Construction Requirements: Installation of filter cloth, pipe, backfill and replacement of shoulder base shall follow immediately behind the trenching operations. At the end of each day's operations, all trenches shall be backfilled. In no case shall trenches be left open at night. All operations shall be performed in such manner that will not damage the existing roadway pavement not the shoulder surfacing and base course outside the limits of the underdrain trench. Trenching shall be excavated with suitable mechanical trenching equipment that will produce a trench of uniform width and depth. All removed materials considered unacceptable for spreading on slopes shall be disposed of by the contractor outside the high-way right-of-way with written permission of the property owner on whose property the materials are placed. The excess and accepted materials from the excavation may be wasted uniformly on embankment slopes or disposed of outside the highway right-of-way at the contractor's option. The contractor shall satisfactorily restore vegetation on grassed areas affected by his operations. Care shall be taken during placement of the filter cloth (a) Pea Gravel Backfill: The completed trench shall be lined with plastic filter cloth. Adjoining sheets of cloth shall be spliced by lapping at least 18" and satisfactorily securing, or by use of sewn or heat-bonded splices. A sufficient width of cloth shall be placed in the trench to permit the cloth to lap over the top of the trench for the full width of trench. Underdrain pipe shall be installed in the cloth-lined trench in accordance with Section 703 using approved joining methods. After installation of the pipe, the trench shall be backfilled with the specified pea gravel in a manner that will not cause displacement of the pipe. The backfill shall be uniformly vibrated and compacted with approved equipment to the satisfaction of the engineer. Upon completion of backfill operations, the filter cloth shall be lapped over the full width of the trench and secured by an approved method. (b) Base Course: Portland cement concrete and asphaltic concrete for replacement of the removed shoulder base course shall be placed in accordance with Section 724. If portland cement concrete is used for the base course, the top of the backfilled trench shall be covered with one layer of polyethylene film. Asphaltic tack coat conforming to Section 503 shall be applied between layers of asphaltic concrete. Measurement and Payment: Measurement of the shoulder drainage system will be made by the linear foot along the center line of the pipe, complete in place. The accepted quantity of shoulder drainage system will be paid for at the contract unit price under: .Item S-3, Shoulder Drainage System, per linear foot. ITEMS S-4 AND S-5, OUTLET DRAINAGE SYSTEM: These items consist of furnishing and constructing pipe outfalls for the underdrain system in accordance with plan details and the Standard Specifications as amended by project specifications and the following. The following work shall be performed under these items. 1. Excavation of underdrain outfall trenches. - 2. Disposal of excess and unusable excavated materials. - 3. Furnishing and installing nonperforated pipe. - 4. Backfilling the installed underdrain outfall pipes. - 5. Furnishing and constructing shoulder base course and surfacing of either portland cement concrete or asphaltic concrete. - 6. Furnishing and constructing headwalls. - 7. Restoring of vegetation damaged due to the contractor's operations. #### Materials: - (a) Nonperforated Pipe: The pipe shall be either corrugated or noncorrugated plastic pipe or tubing, and shall conform to AASHTO Designation: M 252 (polyethylene), or ASTM Designation: D 2729
or D 3030 (polyvinyl chloride), or ASTM Designation: D 2751 (acrylonitrile butadiene styrene). The stiffness for PVC pipe shall conform to ASTM Desgination: D 3034. - (b) Backfill shall be approved materials from the trench and headwall excavations and/or approved materials for contractor-furnished sources. - (c) Asphaltic Concrete: Asphaltic concrete for replacement of removed shoulder base course and surfacing shall conform to Section 501. - (d) Portland Cement Concrete: Portland cement concrete for replacement of removed shoulder base course and surfacing shall be Class A conforming to Section 902 and having a minimum of 7 sacks of cement (94 pounds each) per cubic yeard. Polyethylene film will not be required over the outfall trenches. - (e) Headwalls: Concrete for headwalls shall be Class A. The mesh hardware cloth called for on the plans shall be heavily galvanized in accordance with ASTM Designation: A 153. Bolts, nuts and washers shall conform to ASTM Designation: A 307 and shall be galvanized in accordance with ASTM Designation: A 153. Welded wire fabric reinforcing shall conform to ASTM Designation: A 185. Construction Requirements: Trenching, installation of pipe and backfilling shall be performed in accordance with Section 703. Pipe shall have solvent-weld or other approved joints. At the end of each day's operations, all trenches shall be back-filled. In no case shall trenches be left open at night. All removed material considered unacceptable for spreading on slopes shall be disposed of by the contractor outside the high-way right-of-way with written permission of the property owner on whose property the materials are placed. All excess and accepted materials from the excavations may be wasted on embankment slopes adjacent to the excavations or disposed of outside the highway right-of-way at the contractor's option. The contractor shall satisfactorily restore vegetation on grassed areas affected by his operations. Portland cement concrete and asphaltic concrete for replacement of the removed shoulder base course shall be placed in accordance with Section 724. Asphaltic tack coat conforming to Section 503 shall be applied between layers of asphaltic concrete. Headwalls shall be placed in accordance with Section 706. Measurement and Payment: The completed and accepted outlet drainage system will be paid for at the contract unit price per each, which included trenching, backfilling, pipe, headwalls and the performance of all work necessary to complete the items. Payment will be made under: Item S-4, Outlet Drainage System (Single Headwall), per each. Item S-5, Outlet Drainage System (Double Headwall), per each. Table 3 COMPRESSIVE AND FLEXURAL STRENGTH (FIELD MOLDED SPECIMENS) MOIST CURED | STA # | Comp. Strength | Flex St. | Age | |--------|----------------|----------|--------| | 133 | 3884 | 624 | 7-Day | | 133 | 4723 | 613 | 23-Day | | 133 | 5462 | 562 | 90-Day | | 128 | 4196 | 634 | 7-Day | | 128 | 4924 | 600 | 28-Day | | 128 | 4992 | 512 | 90-Day | | 120+50 | 4172 | 629 | 7-Day | | 120+50 | 4641 | 675 | 28-Day | | 120+50 | 5630 | 612 | 90-Day | | 110+90 | 3878 | No Test | 7-Day | | 110+90 | 4714 | | 28-Day | | 110+90 | 5509 | | 90-Day | | 98+97 | 3260 | No Test | 7-Day | | 98+97 | 4379 | | 28-Day | | 98+97 | 4759 | | 90-Day | Table 4 FIELD TESTS ON PLASTIC CONCRETE | _Sta #_ | Slump (in) | Air % | Unit Weight 1bs/ft3 | Date
<u>Tested</u> | L. Ft
Pavel | |---------|------------|-------|----------------------|-----------------------|----------------| | 133+00 | 3 | 5.7 | 144.0 | 4/1/1981 | 379 | | 129+50 | 2 1/4 | 3.8 | 146.4 | 4/2/1981 | 857 | | 128+00 | 1 3/4 | 3.8 | 148.8 | 4/2/1981 | | | 127+50 | 4 3/4 | 5.0 | 146.0 | 4/2/1981 | | | 125+27 | 3 | 4.4 | 147.6 | 4/2/1981 | | | 120+50 | 3 1/4 | 5.3 | 145.2 | 4/6/1981 | 700 | | 118+50 | 2 1/2 | 4.5 | 143.6 | 4/6/1981 | | | 112+50 | 2 1/2 | 5.5 | 145.2 | 4/7/1981 | 420 | | 110+90 | 3 | 3.8 | 146.8 | 4/7/1981 | | | 98+97 | 7 | 3.6 | 146.8 | , , | | Table 5 FREEZE-THAW DURABILITY, ABRASION, AND ABSORPTION DATA | Age Cured | 28-Day Absorption (%) | Abrasion $(gram/in^2)$ | Free
DE | ze-Thaw
Cycles | |-----------|-----------------------|------------------------|------------|-------------------| | 7-Day | 5.2 | 0.026 | | | | 28-Day | 4.6 | 0.013 | 82 | 300 | | 90~Day | 3.3 | 0.006 | | | Table 6 COMPRESSIVE STRENGTH AT 28 DAYS (Contract Acceptance Cores) | Sample No. | Height | PSI | |------------|--------|------| | 1 | 4.02 | 6143 | | 2 | 3.50 | 4908 | | 3 | 3.82 | 5154 | | 4 | 3.95 | 5731 | | 5 | 4.80 | 5863 | | 6 | 3.16 | 4583 | | 7 | 3.92 | 6108 | | 8 | 4.85 | 3094 | | 9 | 3.80 | 6383 | | 10 | 3.78 | 4985 | | 11 | 4.96 | 5826 | | 12 | 3.68 | 5679 | | 13 | 4.80 | 5302 | | 14 | 4.14 | 5330 | | 15 | 5.24 | 5352 |